Optimized method for preparation of TiO2 nanoparticles dispersion for biological study.

نویسندگان

  • Xiaoqiang Zhang
  • Lihong Yin
  • Meng Tang
  • Yuepu Pu
چکیده

The objective of the present study was to develop a practical method to prepare a stable dispersion of TiO2 nanoparticles for biological studies. To address this matter a variety of different approaches for suspension of nanoparticles were conducted. TiO2 (rutile/anatase) dispersions were prepared in distilled water following by treated with different ultrasound energies and various dispersion stabilizers (1.0% carboxymethyl cellulose, 0.5% hydroxypropyl methyl cellulose K4M, 100% fetal bovine serum, and 2.5% bovine serum albumin). The average size of dispersed TiO2 (rutile/anatase) nanoparticles was measured by dynamic light scattering device. Agglomerate sizes of TiO2 in distilled water and 100% FBS were estimated using TEM analysis. Sedimentation rate of TiO2 (rutile/anatase) nanoparticles in dispersion was monitored by optical absorbance detection. In vitro cytotoxicity of various stabilizers in 16-HBE cells was measured using MTT assay. The optimized process for preparation of TiO2 (rutile/anatase) nanoparticles dispersion was first to vibrate the nanoparticles by vortex and disperse particles by ultrasonic vibration in distilled water, then to add dispersion stabilizers to the dispersion, and finally to sonicate the nanoparticles in dispersion. TiO2 (rutile/anatase) nanoparticles were disaggregated sufficiently with an ultrasound energy of 33 W for 10 min. The formation of TiO2 (rutile/anatase) agglomerates in distilled water was decreased obviously by addition of 1.0% CMC, 0.5% HPMC K4M, 100% FBS and 2.5% BSA. For the benefit of cell growth, FBS is the most suitable stabilizer for preparation of TiO2 (rutile/anatase) particle dispersions and subsequent investigation of the in vivo and in vitro behavior of TiO2 (rutile/anatase) nanoparticles. This method is practicable to prepare a stable dispersion of TiO2 (rutile/anatase) nanoparticles for at least 120 h.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed matrix membranes prepared from high impact polystyrene with dispersed TiO2 nanoparticles for gas separation

The current study presents synthesis and characterization of high impact polystyrene - TiO2 nanoparticles mixed matrix membranes for separation of carbon dioxide from nitrogen. The solution-casting method was used for preparation of membranes. The nano mixed matrix membranes were characterized using scanning electron microscopy to ensure the suitable dispersion of nano particles in high impact ...

متن کامل

Preparation and Characterization of TiO2 Nanoparticles Prepared by Sol-Gel Method

In this study, TiO2 nanoparticles have been synthesized by sol-gel method. Then, the effects of the different pHs, stirring times, surfactants (CTAB and Span 20) and temperatures on TiO2 nanoparticles were studied. The X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) analyses were used to characterize the samples. The obs...

متن کامل

Effects of deep eutectic solvents in preparation of nanoparticles TiO2

Deep eutectic solvents (DESs) have always been attractive to scientists due to their wide range of applications, a great interest in diverse fields including nanotechnology due to their unique properties as new green solvents. It used large-scale for chemical and electrochemical synthesis nanomaterial. DESs have had also active role in improving the size and morphology of nanomaterial during sy...

متن کامل

Effect of Dispersion Method on Stability and Dielectric Strength of Transformer Oil-Based TiO2 Nanofluids

Dispersion stability of nanoparticles in the liquid media is of great importance to the utilization in practice. This study aims to investigate the effects of mechanical dispersion method on the dispersibility of functionalized TiO2 nanoparticles in the transformer oil. Dispersion methods, including stirring, ultrasonic bath, and probe processes, were systematically tested to verify their versa...

متن کامل

Ultrasonic–Assisted Co–Precipitation Method of Preparation of Nanocomposites in The Al2O3–TiO2–ZrO2 System: Characterization and Microsturcture

Recently, the Al2O3–TiO2–ZrO2 system has found valuable applications, particularly, as a support for NOx storage–reduction (NSR) catalysts. Nanocomposite powders were prepared from the co-precipitation method in inorganic precursors. The behaviors of mixed oxide nanoparticles under ultrasonic irradiation, such as dispersion, and crushing were studied. Phase transformations, crystallite size, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 10 8  شماره 

صفحات  -

تاریخ انتشار 2010